Read and Write Files From HDFS With Spark Scala
-
Install the following sbt (Scala Build Tool) dependencies:
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0" % "provided" libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.4.0" % "provided"
As the Spark Scala dependencies already exist in Saagie, they are specified as
"provided"
to avoid having a heavy JAR file. -
Create your Spark session by running the following lines of code:
val sparkSession = SparkSession.builder().appName("example-spark-scala-read-and-write-from-hdfs").getOrCreate()
Where:
-
"example-pyspark-read-and-write"
can be replaced with the name of your Spark app.
-
-
You can now read and write files from HDFS by running the following lines of code:
// Read files // Read parquet files in Spark DataFrames. val df_parquet = session.read.parquet(hdfs_master + "user/hdfs/wiki/testwiki") // Read CSV files in Spark DataFrames. val df_csv = sparkSession.read.option("inferSchema", "true").csv(hdfs_master + "user/hdfs/wiki/testwiki.csv")
// Define a case class named HelloWorld with a single attribute message of type String. case class HelloWorld(message: String) // Create a DataFrame with 1 partition. val df = Seq(HelloWorld("helloworld")).toDF().coalesce(1) // Write files // Write the DataFrame to a Parquet file with the specified path. df.write.mode(SaveMode.Overwrite).parquet(hdfs_master + "user/hdfs/wiki/testwiki") // Write the DataFrame to a CSV file with the specified path. df.write.mode(SaveMode.Overwrite).csv(hdfs_master + "user/hdfs/wiki/testwiki.csv")